57 research outputs found

    A comparative analysis of XV-15 tiltrotor hover test data and WOPWOP predictions incorporating the fountain effect

    Get PDF
    Acoustic measurements from a hovering full scale XV-15 tilt rotor with the advanced technology blades are presented which show the directionality of fountain effect noise. Predicted acoustic directivity results are also presented which show agreement with the measured data. The aeroacoustic code, WOPWOP, was used in conjunction with a mathematical model which simulated the fountain recirculation aerodynamic effect on the rotor blade surface pressures. The predictions were used to identify the spike character in the measured data as fountain effect associated noise. The directivity of the fountain effect noise was observed to be dominant at the rear of the aircraft with increased intensities 45 degrees below the rotor disk planes

    On the appropriateness of applying chi-square distribution based confidence intervals to spectral estimates of helicopter flyover data

    Get PDF
    The validity of applying chi-square based confidence intervals to far-field acoustic flyover spectral estimates was investigated. Simulated data, using a Kendall series and experimental acoustic data from the NASA/McDonnell Douglas 500E acoustics test, were analyzed. Statistical significance tests to determine the equality of distributions of the simulated and experimental data relative to theoretical chi-square distributions were performed. Bias and uncertainty errors associated with the spectral estimates were easily identified from the data sets. A model relating the uncertainty and bias errors to the estimates resulted, which aided in determining the appropriateness of the chi-square distribution based confidence intervals. Such confidence intervals were appropriate for nontonally associated frequencies of the experimental data but were inappropriate for tonally associated estimate distributions. The appropriateness at the tonally associated frequencies was indicated by the presence of bias error and noncomformity of the distributions to the theoretical chi-square distribution. A technique for determining appropriate confidence intervals at the tonally associated frequencies was suggested

    Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment

    Get PDF
    When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and satellite validation results

    The Off State of GX 339-4

    Full text link
    We report BeppoSAX and optical observations of the black hole candidate GX 339-4 during its X-ray `off' state in 1999. The broad-band (0.8-50 keV) X-ray emission can be fitted by a single power law with spectral index, \alpha ~1.6. The observed luminosity is 6.6e33 erg s^{-1} in the 0.5-10 keV band, which is at the higher end of the flux distribution of black hole soft X-ray transients in quiescence, comparable to that seen in GS 2023+338 and 4U 1630-47. An optical observation just before the BeppoSAX observation shows the source to be very faint at these wavelengths as well (B=20.1, V=19.2). By comparing with previously reported `off' and low states (LS), we conclude that the `off' state is actually an extension of the LS, i.e. a LS at lower intensities. We propose that accretion models such as the advection-dominated accretion flows are able to explain the observed properties in such a state.Comment: Accepted for publication in MNRA

    Limited Liability Companies in Kentucky, Second Edition

    Get PDF
    The Kentucky Limited Liability Company Act, KRS Chapter 275, went into effect July 15, 1994, allowing Kentuckians to conduct business under the LLC form. With over 10,000 LLCs formed in the Commonwealth since the Act\u27s inception, this flexible business entity has become the most popular way to conduct business in Kentucky. The LLC has become so pervasive that business law practitioners, accountants, tax advisors and estate planners must all be well-versed in the myriad of issues and creative applications that accompany this business entity. With flexible tax-treatment and the liability protection of a traditional corporation this entity is utilized not only for business formation and practice but also for business succession and estate planning, the structuring of joint ventures and strategic alliances, as venture capital vehicles, and as tax planning tools. The goal of this monograph is to provide the practitioner with a concise and comprehensive approach to the tools necessary for lawyers to counsel and advise clients on this complex and efficient business entity form. Succinct chapters take the reader through an overview of the LLC entity and the Kentucky LLC Act; choice of entity considerations (both tax and non-tax); the formation, operation and statutory transaction issues which arise for the entity; as well as the new single-member LLC; the professional LLC; the use of the LLC in tax-exempt organizations; wealth transfer planning with LLCs; and securities law, commercial law and benefit issues arising under the LLC entity. Each chapter is set forth in separately numbered paragraphs, present running headers for easy access, and are cross-referenced to other relevant chapters and paragraphs contained in the monograph. Summary and comparative charts, a table of authorities and a statutory appendix are also presented. Finally, a comprehensive index has been created to aid the user in finding relevant subject treatments

    Global optical/infrared - X-ray correlations in X-ray binaries: quantifying disc and jet contributions

    Get PDF
    The optical/near-infrared (OIR) region of the spectra of low-mass X-ray binaries appears to lie at the intersection of a variety of different emission processes. In this paper we present quasi-simultaneous OIR - X-ray observations of 33 XBs in an attempt to estimate the contributions of various emission processes in these sources, as a function of X-ray state and luminosity. A global correlation is found between OIR and X-ray luminosity for low-mass black hole candidate XBs (BHXBs) in the hard X-ray state, of the form L_OIR is proportional to Lx^0.6. This correlation holds over 8 orders of magnitude in Lx and includes data from BHXBs in quiescence and at large distances (LMC and M31). A similar correlation is found in low-mass neutron star XBs (NSXBs) in the hard state. For BHXBs in the soft state, all the near-infrared (NIR) and some of the optical emission is suppressed below the correlation, a behaviour indicative of the jet switching off/on in transition to/from the soft state. We compare these relations to theoretical models of a number of emission processes. We find that X-ray reprocessing in the disc and emission from the jets both predict a slope close to 0.6 for BHXBs, and both contribute to the OIR in BHXBs in the hard state, the jets producing ~90 percent of the NIR emission at high luminosities. X-ray reprocessing dominates the OIR in NSXBs in the hard state, with possible contributions from the jets (only at high luminosity) and the viscously heated disc. We also show that the optically thick jet spectrum of BHXBs extends to near the K-band. (abridged)Comment: Accepted for publication in MNRAS; 19 pages, 7 figure

    The X-ray source population of the globular cluster M15: Chandra high resolution imaging

    Full text link
    The globular cluster M15 was observed on three occasions with the High Resolution Camera on board Chandra in 2001 in order to investigate the X-ray source population in the cluster centre. After subtraction of the two bright central sources, four faint sources were identified within 50 arcsec of the core. One of these sources is probably the planetary nebula, K648, making this the first positive detection of X-rays from a planetary nebula inside a globular cluster. Another two are identified with UV variables (one previously known), which we suggest are cataclysmic variables (CVs). The nature of the fourth source is more difficult to ascertain, and we discuss whether it is possibly a quiescent soft X-ray transient (qSXT) or also a CV.Comment: 9 pages, 6 figures, accepted for publication in MNRAS. Original figures can be obtained from http://www.astro.helsinki.fi/~diana/M15.htm

    Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

    Get PDF
    Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation
    • …
    corecore